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Motif Discovery 
Overview 
Putative binding motifs were identified by applying a suite of motif discovery programs 
to the intergenic sequences identified by the binding data.  The resulting specificity 
predictions were filtered for significance using uniform metrics and then clustered to 
yield representative motifs.  For cases in which multiple significant binding motifs were 
found for a factor, information from specificity databases was used to identify which 
motifs represented the true binding preference. 
  
Motif Discovery Programs 
Motif Discovery Programs have different strengths with respect to finding specificities.  
To gain as comprehensive an analysis as possible, we applied five different motif-finding 
programs to the binding data: AlignACE1, MEME2, MDscan3, the conservation-based 
method described in Kellis et al.4 , and a new conservation-based method called 
CONVERGE (described below).  The MEME program was also used to analyze a 
modified input that incorporated conservation information (see “Probe Sequences”). 
 
To make the search more thorough, we ran each of these programs multiple times with 
different parameters.  AlignACE was run using the default settings ten times with 
different random number seeds, in order to increase the motif space it sampled.  The 
results from the AlignACE runs were grouped together for analysis.  MEME was run 
using the supplied 5th-order Markov background model, the “ZOOPS” motif model, and 
the “-minsites 20 -dna -revcomp” options.  MEME runs were repeated using motif width 
ranges of 7 to 11 and 12 to 18.  To run MDscan, seqeuences were ranked according the p-
value of binding, and the program was run with the “-s 30 -r 5 -t 10” options.  To 
compensate for the fact that MDscan searches only for motifs of fixed width, the program 
was run repeatedly, once with each width in the range 8 to 15 bases.  The method of 
Kellis et. al was applied to the data as described4.  CONVERGE was run twice using 
motif widths of 8 and 15. 
 
MEME_c  
We tested whether we could improve the performance of AlignACE, MEME and 
MDscan by modifying the input sequences to convey the conservation of each base in the 
sensu stricto Saccharomyces species.  Using ClustalW5 alignments for the sensu stricto 
species 4, we replaced a base in the Saccharomyces genome with the letter “N” if it was 
not conserved in 2/3 or 3/4 of the other genomes.   Of the programs we tested, only 
MEME was able to use process the modified sequences.     
 
CONVERGE 
We designed CONVERGE to identify motifs that are both over-represented in a set of 
input sequences and conserved across multiple genomes.  CONVERGE input sequences 
consists of an ungapped DNA sequence corresponding to the primary genome, as well as 
one or more optional aligned sequences, which may contain gaps.  The algorithm is based 
on the ZOOPS model of MEME and uses a 5th-order Markov background model.  
However, whereas MEME searches for matches to a motif model across a set of input 
sequences, CONVERGE searches across the multiple-sequence alignments for each 



sequence.  Specifically, CONVERGE treats the probability of a motif occurring at a site 
in the alignment as the product of the probabilities of the motif occurring at the same site 
in each of the aligned sequences.  Thus, CONVERGE defines a site as conserved in a 
flexible manner that depends on the motif being discovered.  Full details will be 
presented elsewhere. 
 
 
Probe Sequences 
Motif discovery programs were applied to the sequences of probes bound with a p-value 
≤ 0.001.  We found that some intergenic regions were highly homologous over their 
entire length, and consequently skew the results of motif discovery since all 
subsequences are overrepresented.  To remove this bias, we used BLAST6 to identify 
pairs of probes with high sequence similarity over 50% of their lengths.  For each pair, 
the shorter intergenic region was omitted from motif discovery computations. 

To determine the sequences present on the microarrays, we computed the expected 
products of the PCR used to construct the arrays.  Research Genetics primer sequences 
were obtained from http://www.resgen.com/products/YeIRP.php3 and the March 2002 
revision of the yeast genome was obtained from SGD7.  Probes that were predicted to 
amplify more than two different genomic sequences were omitted from the calculations. 
Twenty five probe sequences neighboring repetitive, non-transcribed features (e.g. 
telomeric repeats, X elements and Y’ elements) were also omitted.   
 
PSSM Representation 
Motifs from all programs were converted to a standard position-specific scoring matrix 
(PSSM) for subsequent analysis.  AlignACE and MDscan produce alignments of binding 
sites, and these were first converted into matrices representing the frequency of each base 
(A, C, G, T) at each position of the alignments.  The method of Kellis et al. represents 
motifs as text strings containing ambiguity codes, which were also converted to matrices 
of frequencies.  (For example, if a motif contained the letter “S” at a particular position, a 
value of 0.5 would be assigned to both “C” and “G.”)  The matrices of base frequencies 
were converted to probabilities and then were adjusted with 0.001 pseudo-counts in 
proportion to the 0th-order background probabilities (A:T 0.31; G:C 0.19).  Log-
likelihood scores were computed by dividing the estimated probabilities by the 
background probability for each letter and computing the base-2 logarithm.  
CONVERGE and MEME both provide probability matrices, which were used directly.   
 
 
Motif Scoring 
We tested the significance of each motif by comparing how often it was found in the 
bound and unbound probes.  To encapsulate different approaches to measuring motif 
over-representation, we employed three different metrics: Enrichment, ROC AUC, and 
for motifs discovered by the method described in Kellis et al., the “CC4” score. The 
enrichment score is a direct measure of the occurrence of a motif among bound probes 
compared to all possible gene targets, but does not distinguish between the number of 
motifs occurrences within each intergenic region.  The ROC AUC metric is more 
sensitive to cases in which the number of motif occurrences is a distinguishing factor.   



Finally, the CC4 metric provides a way to account for the importance of the conservation 
of the motif among bound probes. 
 
Motif score significance P<0.001 thresholds for "Enrichment" and "ROC a.u.c." 
specificity metrics obtained from calculations on randomized selections of 
intergenic regions as described in Methods.  Entries containing "n/a" denote 
that the empirical distribution was not normal.  The threshold for the CC4 
metric (4.95) is not dependent on the number of sequences. 
 
Enrichment score 
To obtain the enrichment score, the hypergeometric distribution was used to compare the 
frequency of the motif in the bound probes to that which would be expected if the 
intergenic regions were selected at random from the genome.  A sequence was considered 
to contain a motif if it contained at least one or more sites scoring at least 70% of the 
maximum possible score of the matrix.  

A p-value for the enrichment was computed according to the formula: 
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where B is the number of bound intergenic regions and G is the total number of intergenic 
regions represented on the microarray (or the genome).  The quantities b and g represent 
the number of intergenic regions of B and G matching the motif. The quantity -log10(p) is 
referred to as the enrichment score.     
 
ROC AUC (Receiver Operating Characteristic Area Under Curve) 
The ROC AUC refers to the area under a receiver operating characteristic curve which is 
assembled by ranking the sets of bound and unbound probes according to the number of 
motif matches they contain, and plotting the fractional rankings against each other.  We 
used the method and code described by Clarke and Granek8. 
 
Conservation CC4 
Motifs discovered using the method of Kellis et al.4 were judged according to the CC4 
metric, in which the occurrence of a conserved motif among the bound probes is 
compared to the expected ratio observed among all 3-gap-3 motifs in among the same set 
of bound probes.  The binomial probability of the observed ratio was computed, and is 
reported as in terms of the equivalent z-score. 
 
Motif Significance 
We observed that motif discovery programs produce motifs with high over-representation 
metrics (such as “Enrichment” and “ROC AUC”) even when applied to random 
selections of intergenic regions.  To identify the true motifs we converted the scores from 
each metric into the empirical probability that a motif with a similar score could be found 
by the same program in randomly selected sequences.  We accepted only those motifs 



with a p-value ≤ 0.001.  To estimate these p-values we ran each program 50 times on 
randomly selected sequences on sets of 10, 20, 30, 40, 50, 60, 70, 80, 100, 120, 140, and 
160 probes.   
The observed scores from these random runs were parameterized by a normal 
distribution.  The critical values equivalent to a p-value of  0.001 are provided in 
Supplementary Table S7 for each program and each metric.  If the empirical distribution 
was not normal (p-value of the Shapiro-Wilk test < 0.001), the corresponding metric was 
not used to evaluate motifs generated by the relevant program for regulators with a 
similar number of bound probes. 
 
For example, suppose a motif found by performing ten runs of AlignACE on 30 
intergenic sequences had an enrichment score of 20.  The relevant score distribution is 
obtained by performing ten runs of AlignACE on 50 randomly selected sets of 30 
intergenic sequences.  The distribution of enrichment scores has a mean of 14.1 and 
standard deviation of 2.1.  Thus the significance of the motif is estimated as 0.002. 
 
 
 
Inter-Motif Distance 
We constructed a distance metric to aid in the comparison of motifs.  The distance D 
between two aligned motifs “a” and “b” is defined as, 
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where w is the motif width, and ai,L and bi,L are the estimated probabilities of observing 
base L at position i of motifs a and b, respectively.  The normalizations by w and 2  
facilitate the interpretation as a fractional distance.  For example, a distance of 0.20 
indicates that the two motifs differ by about 20%. 
 
In practice, the optimal alignment of motifs is not known.  We therefore use the 
minimum distance between motifs among all alignments in which the motifs overlap by 
at least seven bases, or when the motifs are shorter, by 2 bases fewer than the shortest 
motif length.  Alignments to the reverse complements of the motifs are included. 
 
Motif Clustering 
The set of significant motifs for each experiment was then clustered via k-medoids 
clustering9 using the distance metric above.  The k-medoids algorithm was performed 
500 times to find a clustering with a minimal sum of inter-cluster distances.  To find the 
optimal number of clusters, this process was first performed with 10 clusters, and then 
repeated with incrementally fewer clusters until all average distances between members 
of a cluster and medoids of other clusters were sufficiently large (greater or equal to 
0.18). 
 



Motif Averaging 
A single motif representing each cluster was computed by averaging the probabilities at 
each matrix position of the aligned motifs comprising the cluster.   
 
Motif Assignment 
Often, motif discovery calculations produced several significant distinct motifs (3, on 
average).  These motifs could represent the desired binding specificity of the protein, or 
they might arise from the specificity of binding partners or have other biological 
significance.  To identify those motifs represent the binding specificity of the profiled 
transcription factor, we compared the specificities to binding data in the Transfac10, 
YPD11, and SCPD12 databases.  Motifs were also checked for similarity to known 
specificities of factors other than the profiled regulator that were found to bind a 
significant number of common targets (p<10-12 by hypergeometric distribution). 
 
Specificity data from these databases is sometimes available in the forms of raw 
sequences, ambiguity codes, and matrices.   For each factor, we assembled a single 
consensus sequence to represent the body of experimentally determined specificity 
information and converted it to a PSSM as described above.  A motif was considered to 
match the known PSSM if the distance (as described above) between them was less than 
0.24. 
 
 
Binding Site Map   
Binding motifs were fused with location analysis data and conservation data to produce a 
map of active binding sites in intergenic regions.  The map was constructed by finding all 
conserved occurrences of each motif within intergenic regions bound by the 
corresponding factor.  For example, of the binding site of Bas1 (TGACTC) has 2368 
matching occurrences in intergenic regions, and only 34 of these are conserved and found 
in intergenic regions bound by Bas1 in either rich media or starvation conditions.   
 
We considered a sequence a match to a motif if it had a score of at least 60% of the motif 
maximum.  We defined “conserved” to mean that the aligned sequence of at least two 
other sensu stricto species also matched the motif.  In cases where fewer than two aligned 
sequences were available, the site was treated as “not conserved.” 
 
Conservation Test for Averaged Motifs 
When the significance of a motif was close to our threshold, it was eliminated if it had 
fewer than three conserved instances among bound intergenic regions and at least 20 
were bound. 
 
Promoter Classification 
Promoters were classified based on the aggregate binding data from all experiments.  A 
promoter was defined as having multiple regulator architecture if more than one regulator 
bound in the aggregate data, regardless of the number of regulators that bound in any 
particular condition.  Similarly, a promoter was assigned to the single regulator 
architecture if it was bound by exactly one regulator in the aggregate data. 



 
Regulators that had a tendency to use the repetitive motif architecture were identified by 
χ2 analysis.  For each regulator, we calculated the number of promoters bound using a 
single site and the number using multiple sites.  These values were then compared to the 
expected values based on the average for all factors. 
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Supplementary Table 7.   
Motif score significance cutoffs (P ≤ 0.001)  
      

Enrichment Score 
Number of  
sequences Converge AlignACE MDscan MEME MEME(c) 

     
10 12.70 20.32 11.78 13.54 n/a 
20 11.96 21.14 12.95 12.89 9.81
30 11.43 20.43 13.30 12.57 n/a 
40 11.34 20.62 14.04 11.64 7.53
50 10.74 19.94 12.23 12.81 7.43
60 10.50 19.71 10.95 12.37 n/a 
70 10.34 18.30 13.25 11.34 n/a 
80 10.20 19.40 12.84 11.93 n/a 

100 9.36 20.31 11.56 10.58 2.91
120 n/a 18.59 13.14 10.94 n/a 
140 8.14 18.52 11.26 10.87 n/a 
160 n/a 20.04 11.38 9.77 n/a 

      

ROC a.u.c. 
Number of  
sequences Converge AlignACE MDscan MEME MEME(c) 

      
10 n/a n/a n/a n/a n/a 
20 0.812 0.842 0.857 0.925 n/a 
30 0.758 0.773 0.793 0.831 0.785
40 0.720 0.713 0.758 0.764 0.737
50 0.687 0.674 0.719 0.737 0.711
60 0.670 0.662 0.688 0.706 0.654
70 0.663 0.641 0.686 0.684 0.664
80 0.643 0.626 0.670 0.675 0.648

100 0.634 0.615 0.664 0.633 0.606
120 0.624 0.604 0.629 0.624 0.602
140 0.608 n/a 0.634 n/a 0.590
160 0.594 0.580 0.613 0.593 0.588
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