
Supplementary Methods 
This paper describes the genomic location of 203 transcriptional regulators, a subset of 
which are examined under different environmental conditions.  We previously reported 
the genomic binding information for 106 regulators profiled in a single growth 
condition1; we have repeated experiments for 44 of these regulators to improve the 
quality of the complete dataset (available at 
http://web.wi.mit.edu/young/regulatory_code).  We have also introduced additional data 
analysis features to reduce noise and improve the results.   
 
Genetic Reagents 
The 203 transcriptional regulators were identified by searching the YPD and MIPS 
databases2-4 for known and predicted transcription factors and nucleic acid binding 
proteins.  Yeast strains were created for each of the 203 regulators in which a repeated 
Myc epitope coding sequence was integrated into the endogenous gene encoding the 
regulator. PCR constructs containing the Myc epitope coding sequence and a selectable 
marker flanked by regions of homology to either the 5' or 3' end of the targeted gene were 
transformed into the W303 yeast strain Z1256. Genomic integration and expression of the 
epitope-tagged protein were confirmed by PCR and Western blotting, respectively. 
 
Growth conditions 
Regulators were selected for profiling in a specific environment if they were essential for 
growth in that environment or if there was other evidence implicating them in regulation 
of gene expression in that environment. 
 
A brief description of the environmental conditions used follows: 
 
Rich media. Cells were grown in YPD (1% yeast extract/2% peptone/2% glucose) to an 
OD600 of ~0.8. 
 
Highly hyperoxic. Cells were grown in YPD to an OD600 of ~0.5 followed by treatment 
with hydrogen peroxide (4 mM final) for 30 minutes. 
 
Moderately hyperoxic. Cells were grown in YPD to an OD600 of ~0.5 followed by 
treatment with hydrogen peroxide (0.4 mM final) for 20 minutes. 
 
Amino acid starvation. Cells were grown to an OD600 of ~0.6 in synthetic complete 
medium followed by treatment with the inhibitor of amino acid biosynthesis 
sulfometuron methyl (0.2 µg/ml final) for two hours. 
 
Nutrient deprived. Cells were grown in YPD to an OD600 of ~0.8 followed by treatment 
with rapamycin (100 nM final) for 20 minutes. 
 
Filamentation inducing. Cells were grown in YPD containing 1% butanol for either 90 
minutes or 14 hours (corresponding to an OD600 of ~0.8). 
 



Mating inducing. Cells were grown in YPD to an OD600 of ~0.8 followed by treatment 
with the alpha factor pheromone (5 µg/ml) for 30 minutes. 
 
Elevated temperature. Cells were grown in YPD at 30ºC to an OD600 of ~0.5 followed 
by a temperature shift to 37ºC for 45 minutes. 
 
Galatose medium. Cells were grown in YEP medium supplemented with galactose (2%) 
to an OD600 of ~0.8. 
 
Raffinose medium. Cells were grown in YEP medium supplemented with raffinose (2%) 
to an OD600 of ~0.8. 
 
Acidic medium. Cells were grown in YPD to an OD600 of ~0.5 followed by treatment for 
30 minutes with succinic acid (0.05 M final) to reach a pH of 4.0. 
 
Phosphate deprived medium. Cells were grown in synthetic complete medium lacking 
phosphate to a final OD600 of ~0.8. 
 
Vitamin deprived medium. Cells were grown in synthetic complete medium lacking 
thiamin to a final OD600 of ~0.8. 
 
Genome-wide Location Analysis 
Genome-wide location analysis was performed as previously described1,5,6. Bound 
proteins were formaldehyde-crosslinked to DNA in vivo, followed by cell lysis and 
sonication to shear DNA.  Crosslinked material was immunoprecipitated with an anti-
myc antibody, followed by reversal of the crosslinks to separate DNA from protein7,8.  
Immunoprecipitated DNA and DNA from an unenriched sample were amplified and 
differentially fluorescently labeled by ligation-mediated PCR.  Triplicate samples were 
hybridized to a microarray consisting of spotted PCR products representing the intergenic 
regions of the S.cerevisiae genome.  Detailed protocols are available on the authors’ 
website. 
 
Microarray design 
Using the Yeast Intergenic Region Primer set (Research Genetics) we PCR amplified and 
printed approximately 6000 DNA fragments, representing essentially all of the known 
intergenic regions in the yeast genome9. The average size of the spotted PCR products 
was 480 bp, and the sizes ranged from 60 bp to 1500 bp. 
 
Raw Data Analysis 
The microarrays were scanned using an Axon200B scanner, and the images were 
analyzed with Genepix 5.0.  Columns corresponding to the background subtracted 
intensities and standard deviation of the background were extracted for further analysis.  
The intensities for the two channels, representing the immunoprecipitated (test) and 
unenriched (control) samples, were normalized by using the median of each channel to 
calculate a normalization factor, normalizing all datasets to a single median intensity.  
The log ratio of the intensity in the test channel to the control channel was calculated.  To 



account for biases in the immunoprecipitation reaction, these log ratios were normalized 
for each spot by subtracting the average log ratio of each spot across all arrays.  The 
intensities in the test channel were then adjusted to yield this normalized ratio.    Finally, 
an error model10 was used to calculate significance of enrichment on each chip and to 
combine data for replicates to obtain a final average ratio and significance of enrichment 
for each intergenic region.  Each intergenic region was assigned to the genes it is most 
likely to regulate, as described on the author’s website.   
 
We have included new refinements in our analysis relative to that used in Lee et al.1.  
Notably, we have excluded artefactual spots from analysis, selected more reliable probes 
for normalization and assigned quality metrics to individual arrays to identify low quality 
experiments. 
 
Error Estimates 
We previously estimated a false positive rate of 6-10% for genome-wide binding data 
that meets a P ≤ 0.001 threshold.  The present study is focused on DNA regions that are 
both bound (P ≤ 0.001) and contain a conserved match to a binding site specificity.  Of 
47 sites that were used by Lee et al.1 to determine the error rate and that met our criteria 
for binding sites, 45 were confirmed by independent gene-specific ChIP experiments.  
Thus, the frequency of false positives in this dataset is likely to be approximately 4%. 
 
The false negative rate is more difficult to estimate, but it is likely to be approximately 
24% in the present genome location dataset.  This estimate was derived by determining 
the number of binding interactions reported in the literature for cell cycle regulators that 
were not identified in the genome-wide location data at P ≤ 0.001 and associated with 
conserved binding sites (12/50).  We selected the cell cycle literature for analysis because 
of the extensive study of this group of regulators and their targets. 
 
Motif Discovery Overview 
Binding motifs were identified in a five-step process described in detail below and 
summarized in Supplementary Figure 2.  First, motifs were discovered by applying a 
suite of motif discovery programs to the intergenic sequences identified by the binding 
data.  The resulting specificity predictions were filtered for significance using uniform 
metrics and then clustered to yield representative motifs.  Conservation-based metrics 
were used to identify the highest-confidence subset of these motifs.  For cases in which 
multiple significant binding motifs were found for a factor, we used statistical scores or 
information from the Transfac11, YPD12, and SCPD13 databases to choose  a single motif 
for each regulator.  Sequence input files, intermediate motif discovery output, and matrix 
representations of the finalized motifs are available on the authors’ website. 
  
Step 1: Initial Motif Discovery 
Motif Discovery Programs have different strengths with respect to finding specificities.  
To gain as comprehensive an analysis as possible, we applied five different motif-finding 
programs to the binding data: AlignACE14, MEME15, MDscan16, the conservation-based 
method described in Kellis et al.17 , and a new conservation-based method called 



CONVERGE (described below).  The MEME program was also used to analyze a 
modified input that incorporated conservation information (see “Probe Sequences”). 
 
To make the search more thorough, we ran each of these programs multiple times with 
different parameters.  AlignACE was run using the default settings ten times with 
different random number seeds, in order to increase the motif space it sampled.  The 
results from the AlignACE runs were grouped together for analysis.  MEME was run 
using the supplied 5th-order Markov background model, the “ZOOPS” motif model, and 
the “-minsites 20 -dna -revcomp” options.  MEME runs were repeated using motif width 
ranges of 7 to 11 and 12 to 18.  To run MDscan, seqeuences were ranked according the 
P-value of binding, and the program was run with the “-s 30 -r 5 -t 10” options.  To 
compensate for the fact that MDscan searches only for motifs of fixed width, the program 
was run repeatedly, once with each width in the range 8 to 15 bases.  The method of 
Kellis et al. was applied to the data as described17.  CONVERGE was run twice using 
motif widths of 8 and 15. 
 
MEME_c  
We tested whether we could improve the performance of AlignACE, MEME and 
MDscan by modifying the input sequences to convey the conservation of each base in the 
sensu stricto Saccharomyces species.  Using ClustalW18 alignments for the sensu stricto 
species17, we replaced a base in the Saccharomyces genome with the letter “N” if it was 
not conserved in 2/3 or 3/4 of the other genomes.   Of the programs we tested, only 
MEME was able to use the modified sequences. 
 
CONVERGE 
We designed CONVERGE to identify motifs that are both over-represented in a set of 
input sequences and conserved across multiple genomes.  CONVERGE input sequences 
consists of an ungapped DNA sequence corresponding to the primary genome, as well as 
one or more optional aligned sequences, which may contain gaps.  The algorithm is based 
on the ZOOPS model of MEME and uses a 5th-order Markov background model.  
However, whereas MEME searches for matches to a motif model across a set of input 
sequences, CONVERGE searches across the multiple-sequence alignments for each 
sequence.  Specifically, CONVERGE treats the probability of a motif occurring at a site 
in the alignment as the product of the probabilities of the motif occurring at the same site 
in each of the aligned sequences.  Thus, CONVERGE defines a site as conserved in a 
flexible manner that depends on the motif being discovered.  Full details will be 
presented elsewhere. 
 
Probe Sequences 
Motif discovery programs were applied to the sequences of probes bound with a P-value 
≤ 0.001.  We found that some intergenic regions were highly homologous over their 
entire length, and consequently skew the results of motif discovery since all 
subsequences are overrepresented.  To remove this bias, we used BLAST19 to identify 
pairs of probes with high sequence similarity over 50% of their lengths.  For each pair, 
the shorter intergenic region was omitted from motif discovery computations.  This 
process removed up to nine regions for some experiments, but less than one on average. 



To determine the sequences present on the microarrays, we computed the expected 
products of the PCR used to construct the arrays.  Research Genetics primer sequences 
were obtained from http://www.resgen.com/products/YeIRP.php3 and the March 2002 
revision of the yeast genome was obtained from SGD20.  Probes that were predicted to 
amplify more than two different genomic sequences were omitted from the calculations. 
Twenty five probe sequences neighboring repetitive, non-transcribed features (e.g. 
telomeric repeats, X elements and Y’ elements) were also omitted.   
 
PSSM Representation 
Motifs from all programs were converted to a standard position-specific scoring matrix 
(PSSM) for subsequent analysis.  AlignACE and MDscan produce alignments of binding 
sites, and these were first converted into matrices representing the frequency of each base 
(A, C, G, T) at each position of the alignments.  The method of Kellis et al. represents 
motifs as text strings containing ambiguity codes, which were also converted to matrices 
of frequencies.  (For example, if a motif contained the letter “S” at a particular position, a 
value of 0.5 would be assigned to both “C” and “G.”)  The matrices of base frequencies 
were converted to probabilities and then were adjusted with 0.001 pseudo-counts in 
proportion to the 0th-order background probabilities (3.1x10-4 pseudocounts for A and T, 
1.9x10-4 pseudocounts for G and C).  Log-likelihood scores were computed by dividing 
the estimated probabilities by the background probability for each letter and computing 
the base-2 logarithm.  CONVERGE and MEME both provide probability matrices, which 
were used directly.   
 
Step 2: Motif Scoring and Significance Testing 
We tested the significance of each motif by comparing how often it was found in the 
bound and unbound probes.  To encapsulate different approaches to measuring motif 
over-representation, we employed three different metrics: Enrichment, ROC AUC, and 
for motifs discovered by the method described in Kellis et al., the “CC4” score.  The 
enrichment score is a direct measure of the occurrence of a motif among bound probes 
compared to all possible gene targets, but does not distinguish between the number of 
motifs occurrences within each intergenic region.  The ROC AUC metric is more 
sensitive to cases in which the number of motif occurrences is a distinguishing factor.   
Finally, the CC4 metric provides a way to account for the importance of the conservation 
of the motif among bound probes.  These scores were compared to significance 
thresholds obtained from calculations on randomized selections of intergenic regions as 
described below in “Significance Thresholds”   
 
Enrichment score 
To obtain the enrichment score, the hypergeometric distribution was used to compare the 
frequency of the motif in the bound probes to that which would be expected if the 
intergenic regions were selected at random from the genome.  A sequence was considered 
to contain a motif if it contained at least one or more sites scoring at least 70% of the 
maximum possible score of the matrix.  

A P-value for the enrichment was computed according to the formula: 
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where B is the number of bound intergenic regions and G is the total number of intergenic 
regions represented on the microarray (or the genome).  The quantities b and g represent 
the number of intergenic regions of B and G matching the motif. The quantity -log10(p) is 
referred to as the enrichment score.  
 
ROC AUC (Receiver Operating Characteristic Area Under Curve) 
The ROC AUC refers to the area under a receiver operating characteristic curve which is 
assembled by ranking the sets of bound and unbound probes according to the number of 
motif matches they contain, and plotting the fractional rankings against each other.  We 
used the method and code described by Clarke and Granek21. 
 
Conservation CC4 
Motifs discovered using the method of Kellis et al.17 were judged according to the CC4 
metric, in which the occurrence of a conserved motif among the bound probes is 
compared to the expected ratio observed among all 3-gap-3 motifs in among the same set 
of bound probes.  The binomial probability of the observed ratio was computed, and is 
reported in terms of the equivalent z-score. 
 
Significance Thresholds 
We observed that motif discovery programs produce motifs with high over-representation 
metrics (such as “Enrichment” and “ROC AUC”) even when applied to random 
selections of intergenic regions.  To identify the true motifs, we converted the scores 
from each metric into the empirical probability that a motif with a similar score could be 
found by the same program in randomly selected sequences.  We accepted only those 
motifs with a P-value ≤ 0.001.  We selected this stringent threshold to minimize false 
positives, and because we observed empirically that it identified the correct motifs for 
many regulators with known specificity.  To estimate these thresholds, we ran each 
program 50 times on randomly selected sequences on sets of 10, 20, 30, 40, 50, 60, 70, 
80, 100, 120, 140, and 160 probes.   
 
The observed scores from these random runs were parameterized by a normal 
distribution.  The critical values equivalent to a P-value of 0.001 are provided in 
Supplementary Table 8 for each program and each metric.  If the empirical distribution 
was not normal (by the Shapiro-Wilk test), the corresponding metric was not used to 
evaluate motifs generated by the relevant program for regulators with a similar number of 
bound probes.   
 
For a particular experiment, we employed the threshold derived from the randomization 
set that had the size closest to the number of bound probe sequences.  For example, 
suppose a motif found by performing ten runs of AlignACE on 32 intergenic sequences 
had an enrichment score of 25.  The relevant score distribution has been obtained by 



performing ten runs of AlignACE on each of 50 randomly selected sets of 30 intergenic 
sequences.  The resulting distribution of enrichment scores has a mean of 14.1 and 
standard deviation of 2.1, and the enrichment that corresponds to significance of P ≤ 
0.001 is thus 20.43.  Since the score of the candidate motif is higher, it is considered 
significant. 
 
Step 3: Motif Clustering and Averaging 
K-medoids Clustering 
The set of significant motifs for each experiment was then clustered via k-medoids 
clustering22 using the distance metric described below.  The k-medoids algorithm was 
performed 500 times to find a clustering with a minimal sum of inter-cluster distances.  
To find the optimal number of clusters, this process was first performed with 10 clusters, 
and then repeated with incrementally fewer clusters until all average distances between 
members of a cluster and medoids of other clusters were sufficiently large (greater or 
equal to 0.18). 
 
Inter-Motif Distance 
We constructed a distance metric to aid in the comparison of motifs.  The distance D 
between two aligned motifs “a” and “b” is defined as, 
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where w is the motif width, and ai,L and bi,L are the estimated probabilities of observing 
base L at position i of motifs a and b, respectively.  The normalizations by w and 2  
facilitate the interpretation as a fractional distance.  For example, a distance of 0.20 
indicates that the two motifs differ by about 20%. 
 
In practice, the optimal alignment of motifs is not known.  We therefore use the 
minimum distance between motifs among all alignments in which the motifs overlap by 
at least seven bases, or when the motifs are shorter, by 2 bases fewer than the shortest 
motif length.  Alignments to the reverse complements of the motifs are included. 
 
Motif Averaging 
A single motif representing each cluster was computed by averaging the probabilities at 
each matrix position of the aligned motifs comprising the cluster.  Low-information 
positions on the flanks of the averaged motifs were removed.  
 
Step 4: Conservation Testing for Averaged Motifs 
We tested the conservation of averaged motifs, and focused subsequent analysis on the 
motifs that met two conservation criteria:  First, we required that the frequency of 
conserved instances of the motif compared to all instances of the motif be at least as high 
within bound intergenic regions as among all intergenic regions.  Second, we required 
that discovered motifs have at least three conserved instances that are bound. 
 



We considered a sequence a match to a motif if it had a score of at least 60% of the motif 
maximum.  We defined a “conserved instance” to mean that the aligned sequence of at 
least two other sensu stricto species also matched the motif.  In cases where fewer than 
two aligned sequences were available, a site was treated as “not conserved.” 
 
Step 5: Assignment a Single Motif to Each Regulator  
Often, the motif discovery process produced several significant, distinct averaged motifs 
(3 on average.).  These motifs could represent the desired binding specificity of the 
protein, or they might arise from the specificity of binding partners or have other 
biological significance. To identify those motifs representing the binding specificity of 
the profiled transcription factor, we compared the specificities to binding data in the 
Transfac11, YPD12, and SCPD13 databases, when available, using the same inter-motif 
distance metric used for clustering (see above.)  There were 21 regulators for which no 
such data were available.  In these cases we chose the motif with the best enrichment 
score. 
 
Specificity data from these databases is sometimes available in the forms of raw 
sequences, ambiguity codes, and matrices.  For regulators without matrices, we 
assembled a single consensus sequence to represent the body of experimentally 
determined specificity information and converted it to a PSSM as described above.  Since 
there is no way to independently assess the quality of the motifs assembled from the 
databases, we used a permissive threshold to detect similarity between the discovered 
motifs and the database motifs.  Motifs scoring below 0.24 were accepted as matches, 
while motifs with scores less than 0.35 were examined manually.  The scores for the 
motifs that were used in the Regulatory Code Map are provided in Supplementary Table 
2. 
 
Motifs Derived from the Literature 
We used a motif derived from the databases for the remaining regulators for which either: 
(1) Too few intergenic regions (<10) were bound for effective motif discovery, (2) 
discovered motifs similar to the literature were eliminated by the conservation in Step 4, 
or (3) none of the discovered motifs matched the literature in Step 5.  These motifs were 
only included if they had at least one conserved instance that was bound.  The resulting 
compendium of 102 motifs (Supplementary Table 3) was used in all subsequent analysis.    
 
Regulatory Code Map   
Binding motifs for 102 regulators (Supplementary Table 3) were fused with location 
analysis data and conservation data to produce a map of active binding sites in intergenic 
regions.  The entire map is available at http://web.wi.mit.edu/fraenkel/regulatory_map/.  
The map was constructed by finding all conserved occurrences of each motif within 
intergenic regions bound by the corresponding factor.  
 
We used a binding P-value threshold of P ≤ 0.001 and the definition of conservation as 
described in the “Conservation Test” section above.  Variants of the map constructed 
with different binding and conservation thresholds are also available online. 
 



Distributions of distances from the start codon (ATG) of open reading frames to binding 
sites in the adjacent upstream region were derived from the above data.  These were 
compared to a distribution calculated on ten thousand “randomized” genomes in which 
the binding sites in each intergenic region were redistributed randomly and independently 
between the adjacent genes.  The region from –100 to –500 (grey area in Figure 2c) 
contains many more binding sites than expected. 
 
Promoter Classification 
Promoters were classified based on the aggregate binding data from all experiments.  A 
promoter was defined as having multiple regulator architecture if more than one regulator 
bound in the aggregate data, regardless of the number of regulators that bound in any 
particular condition.  Similarly, a promoter was assigned to the single regulator 
architecture if it was bound by exactly one regulator in the aggregate data. 
 
Regulators that had a tendency to use the repetitive motif architecture were identified by 
chi-square analysis.  For each regulator, we calculated the number of promoters 
containing a single site and the number containing multiple sites.  These values were then 
compared to the expected values based on the average for all factors. 
 
Co-occurring regulatory motifs were determined based on P values representing the 
probability, based on the hypergeometric distribution, of finding the observed number of 
intergenic regions (or more) bound by both regulators under the null hypothesis that 
binding for the two regulators is independent. 
 
Regulator Behaviour Classification 
The binding of each regulator was compared in pair-wise fashion for every environmental 
condition in which that regulator was studied.  Only regions bound at P ≤ 0.001 and 
containing conserved matches to the corresponding motif were included in this analysis.  
Some regulators fall into multiple categories depending on exactly which conditions are 
compared. 
 
For the “condition invariant” category the ratio of the overlap of bound probes for a 
regulator was greater than 0.66, and the ratio of the number of bound probes was between 
0.66 and 1.5. 
 
For the “condition enabled” category the regulator bound to no probes in one 
environment. 
 
For the “condition expanded” category the ratio of the overlap of bound probes for a 
regulator was greater than 0.66, and the ratio of the number of bound probes was less 
than 0.66 or greater than 1.5. 
 
For the “condition altered” category the regulator bound at least one probe in both 
environments and the ratio of the overlap of bound probes was less than 0.66. 
 



Experimental Confirmation of Predicted Specificity 
We compared the discovered motifs to those in the literature using an automated method, 
and selected the regulator for which the discrepancy was the greatest, Cin5 
(Supplementary Table 2).  The discovered motif, TTAcrTAA, contains a one base 
insertion compared to the previously reported site23, TTACTAA.  The previously known 
site is poorly enriched in the probes bound by Cin5 (P ≤ 0.02), while the discovered motif 
is very strongly enriched (P ≤ 10-38.4).   
 
We used a gel-shift assay to test whether the specificity for Cin5 that we inferred from 
our in vivo data also represented the in vitro properties for this regulator (Supplementary 
Figure 3). The DNA-binding domain of Cin5 was cloned into a derivative of the pET-32 
vector (Novagen) fused to thioredoxin and a poly-histidine peptide, expressed in E. coli, 
and purified by affinity chromatography. Protein was incubated with a Cy5-labeled 
oligonucleotide containing the sequence gcgacaTTACCTAAgggc and challenged with 
unlabeled competitor containing either the same sequence or the previously published 
binding site (gcgacaTTACTAAagggc23).  The reactions were analyzed on 10% 
acrylamide gels run in 0.5x TBE.  Similar results were obtained for a probe containing 
the core sequence of TTACGTAA. 
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